

Brooklyn Land Use Department
69 South Main Street
Brooklyn CT 06234
(860) $779-3411 \times 31$

Inland Wetlands

SITE INSPECTION NUMBER

Zoning Enforcement \qquad

Address

Blight Enforcement \qquad
12345

Pret Pail Archer, Andreurt fake
Kausch. I inopected and took photos.
There is a lot of skunk cabbage outside the delineated wetlands as you enter the rite off Church street.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
comisiznemesion In. Wash burn
Owner or Authorized Signature \qquad

DRAINAGE NARRATIVE
3-Lot Subdivision
Church Street, Brooklyn, CT
Prepared for
Kausch \& Sons, LLC

The existing parcels consist of a total of approximately 27 acres of undeveloped woodlands located to the west of Church Street in Brooklyn Connecticut. There are inland wetlands located in the north and southern parts of the site.

The proposed development consists of 2 residential building lots served by approximately 950 L.F. of new shared driveway access from Church Street. Presently, storm water in the proposed development area drains north to south, exiting the site via the wetlands and eventually discharging to the Quinebaug River to the east.

The shared driveway for the building lots is required to cross existing wetlands in three locations. The crossing locations have been determined to minimize impact to the wetland. The crossing lengths are approximately 50,75 and 73 feet respectively.

The following determines the size of the drainage culverts required to pass the 25 -year storm event with inlet control.

Methodology:

In accordance with the Town of Brooklyn's Public Improvement Specifications, the site's watershed was analyzed using the Rational method for the 25 -year storm. The Rational method predicts the peak runoff according to the formula: $\mathrm{Q}=\mathrm{CiA}$, where C is a runoff coefficient, i is the rainfall intensity, and A is the sub-catchment area.

Rainfall intensities used in the calculations were taken from the Brooklyn (06-0918) weather station readings accessed via the NOAA Atlas 14 Point Precipitation Frequency website.

DEEP watershed basin boundaries and Connecticut Elevation (Lidar) Data (See SK-1) was used to determine the approximate watershed area contributing to each driveway crossing.

The site consists primarily undeveloped woodlands. A run-off coefficient (C) of 0.2 (Unimproved Surface) was utilized. The Time of Concentration for each catchment was determined using the TR-55 method.

The peak discharge (Q) for the 25-year storm event was calculated as follows:
Peak Volume $(\mathrm{Q})=\mathrm{CiA}=0.2 \times 6.11 \mathrm{in} / \mathrm{hr} \times$ Area $($ acres $)$
Analysis of each culvert crossing was performed using Hydraflow Express culvert modeler (used in HDS-5 Hydraulic Design of Highway Culverts).

The resultant analysis determined the size and number of culverts required to be installed at a grade consistent with the existing wetland (See Appendix 2).

The following table presents the results for each crossing:

Location	Watershed Area	Tc (Mins)	Peak Volume (cfs	Pipe Required
Crossing 1	0.34	20	0.37	1×15 "
Crossing 2	13.01	40	9.7	$3 \times 15 "$
Crossing 3	5.77	35	4.6	1×15 "

Hyd. No. 1

Wetland Crossing 1

Hydrograph type	$=$ Rational
Storm frequency	$=25 \mathrm{yrs}$
Time interval	$=1 \mathrm{~min}$
Drainage area	$=0.345 \mathrm{ac}$
Intensity	$=5.339 \mathrm{in} / \mathrm{hr}$
IDF Curve	$=6639$ Church_St.IDF

Peak discharge	$=0.368 \mathrm{cfs}$
Time to peak	$=20 \mathrm{~min}$
Hyd. volume	$=1,105 \mathrm{cuft}$
Runoff coeff.	$=0.2$
Tc by TR55	$=20.00 \mathrm{~min}$
Asc/Rec limb fact	$=1 / 4$

Hyd. No. 2

Wetland Crossing 2

Hydrograph type	$=$ Rational
Storm frequency	$=25 \mathrm{yrs}$
Time interval	$=1 \mathrm{~min}$
Drainage area	$=13.010 \mathrm{ac}$
Intensity	$=3.728 \mathrm{in} / \mathrm{hr}$
IDF Curve	$=6639$ Church_St.IDF

Peak discharge	$=9.701 \mathrm{cfs}$
Time to peak	$=40 \mathrm{~min}$
Hyd. volume	$=58,207 \mathrm{cuft}$
Runoff coeff.	$=0.2$
TC by TR55	$=40.00 \mathrm{~min}$
Asc/Rec limb fact	$=1 / 4$

Hyd. No. 3

Wetland Crossing 3

Hydrograph type	$=$ Rational
Storm frequency	$=25 \mathrm{yrs}$
Time interval	$=1 \mathrm{~min}$
Drainage area	$=5.770 \mathrm{ac}$
Intensity	$=4.023 \mathrm{in} / \mathrm{hr}$
IDF Curve	$=6639$ Church_St.IDF

Peak discharge	$=4.643 \mathrm{cfs}$
Time to peak	$=35 \mathrm{~min}$
Hyd. volume	$=24,375$ cuft
Runoff coeff.	$=0.2$
TC by TR55	$=35.00 \mathrm{~min}$
Asc/Rec limb fact	$=1 / 4$

Culvert Report

Wetland Crossing 1

Invert Elev Dn (ft) = 287.80
Pipe Length (ft) $=24.00$
Slope (\%) $=0.21$
Invert Elev Up (ft) $=287.85$
Rise (in) = 15.0
Shape $=$ Cir
Span (in)
No. Barrels
n-Value
Inlet Edge
$=15.0$
$=1$
= Projecting
Coeff. K,M,c,Y,k $=0.0045,2,0.0317,0.69,0.5$

Embankment

Top Elevation (ft) $=290.00$
Top Width (ft) $=12.00$
Crest Width (ft) = 50.00

Calculations

Qmin (cfs) $\quad=1.00$
Qmax (cfs) $=1.00$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted

Qtotal (cfs)	$=1.00$
Qpipe (cfs)	$=1.00$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=1.17$
Veloc Up (ft/s)	$=1.24$
HGL Dn (ft)	$=288.62$
HGL Up (ft)	$=288.63$
Hw Elev (ft)	$=288.64$
Hw/D (ft)	$=0.63$
Flow Regime	$=$ Outlet Control

Culvert Report

Wetland Crossing 2

Invert Elev Dn (ft) = 285.90
Pipe Length (ft) $=24.00$
Slope (\%) $=0.83$
Invert Elev Up (ft) $=286.10$
Rise (in) $\quad=15.0$
Shape $=$ Cir
Span (in)
No. Barrels
n-Value
Inlet Edge
$=15.0$
$=2$

Coff. K, M, Y, = Projecting
Coeff. K,M,c, Y,k $=0.0045,2,0.0317,0.69,0.5$

Embankment

Top Elevation (ft) $=288.40$
Top Width (ft) $=12.00$
Crest Width (ft) = 50.00

Calculations

Qmin (cfs) $\quad=5.00$
Qmax (cfs) $=15.00$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted

Qtotal (cfs)	$=10.00$
Qpipe (cfs)	$=10.00$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=4.44$
Veloc Up (ft/s)	$=5.21$
HGL Dn (ft)	$=286.98$
HGL Up (ft)	$=287.01$
Hw Elev (ft)	$=287.51$
Hw/D (ft)	$=1.13$
Flow Regime	$=$ Inlet Control

Culvert Report

Wetland Crossing 3

Invert Elev Dn (ft) = 287.80
Pipe Length (ft) $=24.00$
Slope (\%) $=6.25$
Invert Elev Up (ft) $=289.30$
Rise (in) = 15.0
Shape $=$ Cir
Span (in) $\quad=15.0$
No. Barrels $=1$
n-Value
Inlet Edge
$=0.012$
Coeff. K,M,c, Y,k $=0.0045,2,0.0317,0.69,0.5$

Embankment

Top Elevation (ft) $=291.00$
Top Width (ft) $=12.00$
Crest Width (ft) $=50.00$

Calculations

Qmin (cfs) $\quad=1.00$
Qmax (cfs) $\quad=10.00$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted

Qtotal (cfs)	$=5.00$
Qpipe (cfs)	$=5.00$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=4.44$
Veloc Up (ft/s)	$=5.22$
HGL Dn (ft)	$=288.88$
HGL Up (ft)	$=290.21$
Hw Elev (ft)	$=290.71$
Hw/D (ft)	$=1.13$
Flow Regime	$=$ Inlet Control

Civil • Structural • Survey

Inland Wetlands Commission
Town of Brooklyn
69 South Main Street
Suite 22
Brooklyn, CT 06234

RE: CLA 6639

Subdivision
Church Street Brooklyn CT

To the Commission:
CLA Engineers was retained by A. Kausch \& Sons LLC to conduct a wetlands investigation and functional assessment on the parcel of land, located on Church Street in Brooklyn CT that is proposed to be developed for a residences. The approximate site location is shown on the cover sheet of the site plans. The purposes of the investigation were to: establish the wetland delineation, provide background data in the form of determining wetland functions, and assess the potential for wetland impacts due to the proposed development.

Wetlands were delineated by Robert Russo of CLA Engineers according to the State of Connecticut statutory definition as described in Section 22a of the State Statutes. CLA conducted field work in October of 2020 amd March of 2021.

After wetland delineation was complete, the wetland resources of the site were surveyed by conducting a deliberate walk through of the site, traversing each wetland in order to collect data characteristic of that wetland. During the walk through, vegetation identifiable was noted, and described.

Site Setting

Much of the site had been used for agriculture up until the $20^{\text {th }}$ century as demonstrated by abundant stonewalls. The presence of numerous Japanese barberry (Berberis thumbergii) Indicates that the site was likely used for cattle grazing in the past as this plant is ignored by cattles and soon takes over. The site currently has two vegetative cover types that were established after farming ceased. Both cover types, wooded upland and wooded swamp, are dominated by mixed hardwoods.

The areas of upland have mixed hardwoods such as red maple, red oak, white oak, black cherry and black birch. The wetlands are dominated by red maple trees with other species such as yellow birch and pin oak in lesser numbers.

The land uses surrounding the site include residential, agricultural and woodland. The residential development is primarily located to the north and south along Church St and to the west along Pomfret Landing Rd. Undeveloped farmland and woodland also occurs surrounds the site to the north, west and south.

Throughout the site slopes vary from moderate to nearly flat. The surface water drains both south westward and south eastward off of the site.. The slopes on the east and west side of the site are gentle at the edge of the wetland and are not prone to erosion.

Surficial Geology and Soils

Southern New England was overlain by glacial ice as recently as 12,000-15,000 years ago. The materials that the glaciers deposited over top the local bedrock determine the surficial geology of the region and of the site. Connecticut's glacial deposits are generally divided into three categories: glacial till (un-stratified sand, silt and rock), glaciofluvial (water sorted, stratified sand and gravel), and glaciolacustrine (stratified sand, silt and clay that settled out in lakebeds). Only glacial till is present on the site of the proposed residences. soils formed in till deposits typically have sandy loam to silt loam textures and in this case they are the coarser, sandy loams. The slopes are moderate to flat throughout the site and this leads to differences in soil mapping classification as listed by the NRCS.

Table 1 is a summary table of the soils found on the site.
Table 1 - Soil Types and Properties at the Church Street Site

Soil Series	Parent Material	Drainage Class	Texture/Characteristics
*2 Ridgebury	Glacial Till	Somewhat poorly to very poorly drained	Stony sandy loam
61 Canton and Charlton	Glacial till	Well drained	Sandy loam
46 Woodbridge	Glacial Till	Moderately Well Drained	Sandy loam

[^0]
Wetland Descriptions and Functions

In the area of the proposed development there is a wetland system that occupies a broad lowland that stretches from Church Street north westward. The wetland itself varies from approximately 100 to 400 feet wide. It is nearly level but has hummocky microtopography Under the USFWS system is a palustrine deciduous swamp (PF01) that is seasonally flooded/saturated. This designation reflect its vegetation which is dominated by mature trees, and its hydrology which has shallow standing water in the winter and after storm events. The wetland lacks standing water in the summer and was not found to contain a perennial stream or vernal pool.

The typical vegetation of the wetlands includes: trees such as red maple trees and saplings, yellow birch trees and saplings; shrubs such as Japanese barberry, spice bush, highbush blueberry, winterberry holly, sweet pepperbush, clammy azalea, alder and plants such as skunk cabbage, cinnamon fern, sphagnum, royal fern, and sensitive fern.

The principle functions of this wetland system are typical to local red maple swamps and the wetland is generally undisturbed with an undisturbed wooded upland buffer. The CTDEEP NDDB (December 2020) shows no known habitat of threatened, endangered or special concern species.

The functions were found to include:

- Wildlife habitat
- Floodwater retention/detention
- Groundwater recharge/discharge
- Biomass production export
- Aesthetics

These values associated with the wetland and are supported by several important features of that wetland:

- Areas of undeveloped buffer
- Limited development within the watershed
- Evidence of use by a diversity of wildlife species.

Potential for Impacts

As shown on the project plans there are proposed activities in the inland wetlands. Three wetland crossing are proposed for the driveway that will provide access to the two houses. These activities are limited to impacts necessary to provide the driveway and are purposed
located in the narrowest reaches of wetland in order to minimize impacts. This lot has significant developable area that cannot be accessed without wetland impacts. The width of the driveway has been kept to the minimum required and the use smaller diameter culverts assists in keeping the elevation of the driveway low, minimizing the side slopes needed for the crossing. CLA believes that the proposed driveway crossing is the most feasible and prudent alternative.

As shown on the plans, work in the wetland will include:

- Clearing and grading
- Construction of driveways and placement of culverts
- Installation of erosion and sedimentation controls
- Construction of utilities

The activities in the wetland have been minimized in order to limit wetland disturbance.
As shown on the plans, work in the upland review zone will include:

- Clearing and grading
- Construction of driveways
- Installation of erosion and sedimentation controls
- Construction of utilities

These activities in the upland review zone present limited potential for wetland impacts. The site has only moderate slopes and short length of slope. CLA believes that the Best Management Practices (BMPs) measures shown on the plans for erosion and sediment control and storm water management will be adequate in preventing wetland impacts if properly installed and maintained.

CLA notes that in order to minimize the potential for impacts to wetlands, the E\&S has been designed in compliance with the CTDEEP 2002 E\&S Manual.

Alternatives

CLA examined alternative to the proposed wetland crossings. Note that the property has frontage on Pomfret Landing Rd, which could be used to gain access via a driveway, but wetland impacts would also be required. CLA conducted a field to determine the feasibility of a driveway crossing walk of this location. CLA determined that a driveway crossing in this location is not the most feasible and prudent alternative based on the following observations.

1. The wetland that would have to be crossed has a perennial stream, indicating that is a more valuable wetland than those to be impacted by coming off of Church Street.
2. The wetland to be crossed is 12 to 14 feet lower in elevation than the access strip off of Pomfret Landing Rd. This would necessitate a wide wetland fill to accomplish the crossing.
3. The wetland to be crossed is over 100 feet wide and continues, north and south, as a wildlife travel corridor. This characteristic is lacking in the wetlands that would be disturbed by gaining access from Church Street.
4. Due to the width of the wetland and elevation change, present, a wetland crossing at the Pomfret Land access would create a substantial fragmentation of the wetland and reduce its habitat values significantly. This would not be the case with the Church Street acess.

Based on these field observations, CLA believes that the proposed wetland crossings represent the most feasible and prudent alternative.

Summary

The proposed development activities will directly impact wetlands. The work in the upland review zone can be managed with BMPS so as to not impact wetlands during construction. In summary, if the proposed erosion and sedimentation control measures are adhered to, CLA believes that the wetland impacts will be limited to what is necessary to provide a driveway for the building lost.

Please contact me if you have any questions.

Very truly yours,

$$
R \subset R_{u s s o m}
$$

Robert C. Russo
Soil Scientist
M. ε. 95 oth

Soil Map-State of Connecticut
(Church Street)

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
2	Ridgebury fine sandy loam, 0 to 3 percent slopes	5.6	3.8\%
3	Ridgebury, Leicester, and Whitman soils, 0 to 8 percent slopes, extremely stony	0.4	0.3\%
23A	Sudbury sandy loam, 0 to 5 percent slopes	4.1	2.8\%
38C	Hinckley loamy sand, 3 to 15 percent slopes	29.8	19.8\%
45A	Woodbridge fine sandy loam, 0 to 3 percent slopes	4.9	3.3\%
45B	Woodbridge fine sandy loam, 3 to 8 percent slopes	28.7	19.1\%
46B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	15.4	10.2\%
50B	Sutton fine sandy loam, 3 to 8 percent slopes	6.5	4.3\%
51B	Sutton fine sandy loam, 0 to 8 percent slopes, very stony	2.8	1.9\%
52C	Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	1.4	0.9\%
61 B	Canton and Charlton fine sandy loams, 0 to 8 percent slopes, very stony	9.5	6.3\%
62C	Canton and Charlton fine sandy loams, 3 to 15 percent slopes, extremely stony	0.7	0.5\%
62D	Canton and Charlton fine sandy loams, 15 to 35 percent slopes, extremely stony	4.6	3.0\%
73C	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	14.7	9.8\%
84C	Paxton and Montauk fine sandy loams, 8 to 15 percent slopes	2.0	1.3\%
85B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony	3.0	2.0\%
103	Rippowam fine sandy loam	13.6	9.1\%
305	Udorthents-Pits complex, gravelly	2.5	1.6\%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Totals for Area of Interest		150.2	100.0\%

INLAND WETLANDS \& WATERCOURSES COMMISSION TOWN OF BROOKLYN, CONECTICUT

\qquad Application\# 041321 D

APPLICATION -- INLAND WETLANDS \& WATERCOURSES

PROPERTY OWNER IF DIFFERENT \qquad Phone \qquad
Mailing Address \qquad EMAIL \qquad
Engineer/Surveyor (if any)
 EuGweZnS ATTORNEY (IF ANY)
Property location/Address Tomes lndo.als RD) Cifincff STREE) MAP \# $\frac{3 \eta}{3 n}$ LOT \# $\frac{70 / 21}{1 \eta}$ ZONE RA TOTAL ACRES $2 \eta \pm$ ACRES OF WETLANDS ON PROPERTY _ C \ddagger

2 RESIDESAR HONES, SEPDE SYSTEM, NELC - Mon Gavouvg

Wetlands Excavation and Fill:

Location where material will be placed: On Site OfF Site
Total Regulated Area altered: SQ FT, Acres

$$
20,000 \cdot 4 \pm
$$

EXPLAIN ALTERNATIVES CONSIDERED (REQUIRED): \qquad

MItigation Measures (if required): Wetlands/watercourses created: iCy \qquad SOFT \qquad ACres \qquad Is parcel located within 500ft of an adjoining Town? au If yes, which towns) \qquad
The owner and applicant hereby grant the brooklyn IWWC, the board of Selectman and their authorized agents permission to enter the SUBJECT PROPERTY FOR THE PURPOSE OF INSPECTION AND ENFORCEMENT OF THE IWWC REGULATIONS OF THE TOWN OF BROOKLYN. If THE COMMISSION determines that outside review is required, applicant will pay consulting fee.

NOTE: DETERMINATION THAT THE INFORMATION PROVIDED IS INACCURATE MAY INVALIDATE THE IWWC DECISION AND RESULT IN ENFORCEMENT ACTION.
APPLICANT:
 DATE 4/5/21

\square DATE $4 / 5 / 2$

CIS CODE\#:
For DEEP Use Only

Statewide Inland Wetlands \& Watercourses Activity Reporting Form

Please complete and mail this form in accordance with the instructions on pages 2 and 3 to:
DEEP Land \& Water Resources Division, Inland Wetlands Management Program, 79 Elm Street, $3^{\text {rd }}$ Floor, Hartford, CT 06106 Incomplete or incomprehensible forms will be mailed back to the inland wetlands agency.

PART I: Must Be Completed By The Inland Wetlands Agency

1. DATE ACTION WAS TAKEN: year: \qquad month: \qquad
2. ACTION TAKEN (see instructions, only use one code): \qquad
3. WAS A PUBLIC HEARING HELD (check one)? yes \square по
4. NAME OF AGENCY OFFICIAL VERIFYING AND COMPLETING THIS FORM: (print name) \qquad (signature)

PART II: To Be Completed By The Inland Wetlands Agency Or The Applicant

5. TOWN IN WHICH THE ACTION IS OCCURRING (print name): \qquad does this project cross municipal boundaries (check one)? yes \square no \square If yes, list the other town (s) in which the action is occurring (print names)): \qquad ,
6. LOCATION (see instructions for information): USGS quad name: \qquad or number: \qquad 43 subregional drainage basin number: \qquad
A. karsch:Sonis Crtiert 55 / Ant ry Did

7. NAME OF APPLICANT, VIOLATOR OR PETITIONER (print name):
8. NAME \& ADDRESS / LOCATION OF PROJECT SITE (print information): \square permanent \square description: \qquad briefly describe the action/project/activity (check and print information): temporary \square Prvecomy, Drzispritat Hunts
9. ACTIVITY PURPOSE CODE (see instructions, only use one code): $\quad 13$
10. ACTIVITY TYPE CODE (S) (see instructions for codes): \qquad , \qquad _ \qquad 12 \qquad
\qquad
11. WETLAND / WATERCOURSE AREA ALTERED (must provide acres or linear feet): wetlands: \qquad acres open water body: \qquad acres
stream: \qquad linear feet
12. UPLAND AREA ALTERED (must provide acres): \qquad acres
13. AREA OF WETLANDS / WATERCOURSES RESTORED, ENHANCED OR CREATED (must provide acres): \qquad

PART II: To Be Completed By The DEEP
DATE RETURNED TO DEEP:

REQUIREMENTS

\qquad APPLICATION FEE $\$ 150$ State Fee ($\$ 60.00$) \qquad $\$ 210$
\qquad COMPLETION OF CT DEEP REPORTING FORM
\qquad ORIGINAL PLUS COPIES OF ALL MATERIALS REQUIRED - NUMBER TO BE DETERMINED BY STAFF
\qquad Pre-ApPLICATION MEETING WITH THE WETLANDS Agent is recommended to examine the scope of the activity

Site Plan showing location of the wetlands with existing and proposed conditions. Applicant may be required TO HAVE A CERTIFIED SOIL SCIENTIST IDENTIFY THE WETLANDS.

Compliance with the Connecticut Erosion \& Sedimentation Control Manual

\qquad If THE PROPOSED ACTIVITY IS deEmed to be a "Significant impact activity" a Public Hearing is required along with the FOLLOWING INFORMATION:

- NAMES AND ADDRESSES OF ABUTTING PROPERTY OWNERS
- ADDITIONAL INFORMATION AS CONTAINED IN IWWC REGULATIONS ARTICLE 7.6

ADDITIONAL INFORMATION/ACTION NEEDED:

Other applications may ae required. Contact these agencies for further information:
Application to State of Connecticut DeEp
inland Water Resources Division
79 ELMS.
Hartford, Ct. 06106
1-860-424-3019
Department of the army Corps of Engineers
696 VIRGINIA ROAD
CONCORD, MA. 01742
1-860-343-4789

STAFF USE ONLY:
\qquad Declaratory Ruling: As of Right \& Non-Regulated Uses (See ow wC Regulations Section 4)

PERMIT REQUIRED:
AUTHORIZED BY STAFF/CHAIR (NO ACTIVITY IN WETLANDS/WATERCOURSE AND MINIMAL IMPACT)
AUTHORIZED BY STAFF/CHAIR (NO ACTIVITY IN WETLANDS/WATERCOURSE AND MINIMAL IMPACT)

AUTHORIZED BY IWWC
\qquad SIGNIFICANT ACTIVITY/Public HEARING
\qquad NO PERMIT REQUIRED
\qquad OUTSIDE OF UPLAND REVIEW AREA
NO IMPACT

CHAIR, BROOKLYNIWWC
WETLANDS OFFICER
\qquad Timber Harvest

[^0]: * Wetland soil types

