# NORTHEASTERN CONNECTICUT COUNCIL OF GOVERNMENTS # ENGINEERING PLAN REVIEW PERTAINING TO PROPOSED MULTI-FAMILY DEVELOPMENT (Assessor's Map 38, Lot 22) LOUISE BERRY DRIVE BROOKLYN, CT (July 22, 2020) The comments contained herein pertain to my review of plans, consisting of eight (8) sheets, entitled "Proposed Multi-Family Development, Louise Berry Drive, Brooklyn, Connecticut, Prepared for Shane Pollock," prepared by Killingly Engineering Associates, dated April 23, 2020. My comments are meant to serve both the Inland Wetlands and Watercourses Commission and the Planning and Zoning Commission, as they apply to each commission. Most recent Town of Brooklyn Zoning, Subdivision and Wetlands Regulations and Public Improvement Specifications were researched for this review. # Sheet 2 of 8 - Property Survey 1. The soil scientist's signature block is missing. ### Sheet 3 of 8 - Site Plan - 1. Type of curbing and their radii around the islands in front of the dwelling units is not noted. - 2. Recommend sidewalk sidewalks be 5' wide with a 2' wide grass snow shelf between the curb and edge of sidewalk. The proposed sidewalk design will have them more impacted during winter snow removal operations. There is sufficient space to push the walks back and make them wider. - 3. If school age children will be living here, it is recommended that sidewalks be installed along Louise Berry Drive opposite the school grounds. - 4. There is no indication on the plans of the number of bedrooms in each dwelling unit. The number of bedrooms can be used to calculate sewage flow. - 5. There appears to be one (1) exterior parking space for each dwelling unit. Is there to be a parking garage in each unit to provide at least one (1) additional space? - 6. In front of Units 1-3, the plan shows that a "block retaining wall" is to be constructed opposite the units. Is this to be the Versa-Lok unreinforced retaining wall depicted on Sheet 8 of 8? If so, it should be labeled as such. Also, how are vehicles going to be prevented from driving over the top of the wall because there is no railing or fence shown to be installed to prevent this? - 7. All units except Units 1-3 show curbing around a parking area perimeter and a lawn space adjacent to the unit driveways. Why has this exception been made? - 8. The guide rail symbol opposite the end of Unit 3 should be labeled. - 9. A 28,000 s.f. "recreation area" is to be located to the west of Units 47-51. What constitutes a "recreation area?" Furthermore, a significant portion of it (about 50%) is impacted by a proposed temporary sedimentation basin (see Sheet 5 of 8) and an access right-of-way in favor of the Town of Brooklyn. Will the "recreation area" be impacted by the right-of-way because the right-of-way cannot be encumbered in any way? This area, too, will be partially denuded of native vegetation due to construction of the temporary sedimentation basin and subsequent restoration of the land where it was located. - 10. The steepest created slopes throughout the project should be clearly identified as 3H:1V (max.) so there is no question on how they should be graded. ## Sheet 4 of 8 - Layout and Landscaping Plan - 11. There is a "Light Pole Detail" on this plan, however, there is no indication where the light poles are to be located within the project area or the routing of the electrical system needed to power them. - 12. A portion of the area west of Units 47-51 will be disturbed from the construction of a temporary sedimentation basin. A landscaping plan is needed for restoration of this area, too, but nothing has been shown on the plan. - 13. It would seem appropriate to soften the view of the gravel maintenance access driveway, which is located adjacent to the stormwater basin, from the housing units with landscaping consisting of trees and shrubs. # Sheet 5 of 8 - Drainage and Utilities Plan - 1. Catch basin information is missing, i.e. type of catch basin, top of frame elevation, pipe invert elevations (in out), roadway centerline stationing position and offset (RT or LT) from the centerline station. - 2. Drainage system pipe information is missing, i.e. type of pipe material, diameter, length, and slope. - 3. The type of pipe to be used for the 8" roof leaders has not been specified nor the minimum slope to the connection at a catch basin. Detectable warning tape should be used over the pipe if it is not made from a ferrous material. - 4. Sanitary sewer manhole information is missing, i.e. top of frame elevation and pipe invert elevations, roadway centerline stationing position and offset (RT or LT) from the centerline station. - 5. Sanitary sewer system pipe information is missing, i.e. type of pipe material, diameter, length, and slope. - 6. Building sewer connections should have cleanouts shown exterior of the building footprint. - 7. How are Units 1, 2 & 3 connected to the sanitary sewer system? The nearest sanitary manhole (S1) is shown to be approximately 150' away. "Spaghetti" connections to this manhole should not be allowed and will require extending the sewer main to approximately STA 9+50. - 8. The proposed sanitary sewer collection system is shown to be connected to the existing sanitary sewer line in an easement located on town property. What is the purpose of having this easement? What does the sewer and water line serve? Are the lines mains or building services? Who will make the connections? Who will be responsible for maintaining the sewer and water lines after they are installed? - 9. No information has been provided such as the elevations of the invert of the connections at the existing sanitary sewer manhole (what is the manhole made of—brick, cement block, precast concrete or ?), top of frame elevation, the size of the existing inflow and outflow lines, pipe material, slope, and direction of flow. Due to lack of information it is unclear if this is a sewer main or a service connection and whether or not the calculated sewage flow from the 51 dwelling units (number of bedrooms unknown) can be accommodated by the existing sewer line, whose flow and capacity should be evaluated back to its connection to a main trunk line and the analysis presented in a report. Have test holes been dug to find out whether or not there will be a conflict between the new sewer line (new) and the existing water line that is shown to be in the same easement? - 10. The existing water line in the sewer easement needs to be identified by pipe material, size, static pressure, calculated from static pressure taken at the closest fire hydrant on Vina Lane or Route 205, at the proposed connection and valve/fittings/thrust block configuration to make the connection. Is this considered a water main or a service? - 11. The "sewer easement in favor of the Town of Brooklyn" also contains a water line. Does the recorded sewer easement state that a water line is also included in said easement? If not, will there be an easement for the water line? - 12. The water system needs additional information, i.e. type of pipe (material and joint type—for example, bituminous coated Class 52, cement mortar lined, mechanical joint), RSV gate valves (open right or left?), tapping sleeve and valve, gate valve boxes (sliding type), corporations, curbstops, blowoff assembly, fire hydrants, thrust blocks (with dimensions for 150 psi thrust), description of fittings and whether mechanical joint or push-on, water services to buildings, megalugs, friction clamps, etc. How is the connection to the existing water line to be made and is the existing water line capable of serving it present use and the addition of the 51 single-family residential condominium units? How this was determined should be documented in writing. - 13. Due to the type of building structures and their close proximity to one another, has the Fire Marshal been contacted in writing to determine whether or not a separate fire service will be required for each multi-housing building or if private fire hydrants will be required? Has a hydrant fire flow test been conducted for evaluation by the Fire Marshal? - 14. I calculate, by physics, that the static pressure drop of the water service from the connection in the easement on Town of Brooklyn property (elev. = 238) to the top end of the system (elev. = 312) to be 32 pounds per square inch (there is a 1 psi loss for every 2.31 feet of elevation change). If it is found that the static pressure at the connection is less than adequate, a pump station would become necessary for the domestic supply and the fire supply to overcome the deficiency in water pressure—this should be found out now rather than later. Also, the engineer must take into account additional pressure friction losses due to reduced pressure zone backflow preventers, which is typically a 12 pound per square inch loss, thus making the potential pressure loss close to 45 pounds per square inch. Water meters, service piping, bends and isolation valves also introduce their own friction losses, depending on state of flow. As can be seen from this, a thorough analysis of the water system is necessary to determine if there will be safe and adequate water delivery at acceptable operating pressure to all housing units, all the way up to the intersection of Louise Berry Drive. This is especially important for firefighting where hydrants may be expected to flow at approximately 1,000-1,500 gallons per minute under residual pressure or meeting this rate via assistance with a pumper truck, if the supply main has the delivery capacity for that. The complete analysis of the water system should be presented for review in report form as soon as possible to see if it will be adequate. - 15. How is water consumption metering to be accomplished along with backflow prevention? Will there be a "Hotbox<sup>®</sup>" or similar all-weather environmentally controlled enclosure (needs electricity) protecting a master meter and backflow device or will units be individually metered with their own backflow preventers? If fire hydrants are installed in the development, how will Connecticut Water handle billing that if a master meter at the connection to the existing main is not installed? - 16. The water system needed for a development of this scope needs to be designed by a professional engineer. It is not as simple as connecting a single house to a water main. The system design should be accompanied by numerous construction details in the plan set in order for a contractor and construction inspector is sure the system is being installed properly. - 17. The water main installation is shown following a curved course in some places. Upon closer examination, it may be found that the radius of the curve is greater than the maximum pipe deflection (by size) recommended by American Water Works Association (AWWA) standards and, in fact, bends (fittings with thrust blocks) may have to be utilized in the design to route it around the curve. - 18. For improved quality of water for Units 1, 2 & 3, the proposed water main should be extended to approximately STA 9+50 and a blowoff assembly, friction clamp and thrust block installed there. - 19. The drainage outlet from the stormwater basin will direct water onto the Baker property. Will this require a drainage easement on the Baker property in favor of the condominium association to allow this flow? It is unknown as to what volume of water will discharge in more or less a point source to the receiving wetlands. - 20. It is recommended that the riprap outfall at the terminus of the stormwater basin outlet pipe be constructed as a plunge pool. This will further reduce discharge velocity and provide additional sediment transport reduction. - 21. The level spreader at the terminus of the stormwater basin discharge pipe is not labeled as such and its minimum length should be shown. Also, there needs to be an erosion and sediment control system installed below the disturbance caused by constructing the discharge pipeline and the level spreader. - 22. It is recommended that an additional erosion and sediment control system be installed along the north side of the main road from the cul-de-sac turnaround continuously, save for driveway openings, to opposite centerline STA 8+00. - 23. As shown on the plan, the temporary sedimentation basin will be constructed in an area where there is a six (6) foot difference in elevation across its width (west to east). According to the "Temporary Sediment Trap Embankment Cross Section" located on Sheet 7 of 8, a 3' (max.) deep level bottom excavation, starting on the west side of the basin will require about an 8' deep excavation on the east side of the basin. If this is not the way the basin is to be constructed and instead will be a combination of berm construction on the low (west side) and 3' deep excavation on the east side, that should be shown in the detail on Sheet 7 of 8. In any case, no deep test holes have been dug here to show where groundwater may lie or where an average seasonal high water table may exist, which would be evidenced by soil mottles, to see if there would be an impact on the basin. Constructing the basin with a earthen berm should be shown on the plans because of the large area of tree removal that will occur. How would accumulated water be managed for this basin? What would be the likelihood of an embankment failure if not built with an emergency spillway protected with at least riprap armoring? Furthermore, there is no sediment control system (silt fence or haybales) surrounding the proposed temporary sedimentation basin, because any sediment laden water that rises to the point where it would flow through the stone dike, the dike will not necessarily trap fine particles of sediment with much efficiency. Also, the aforementioned sediment trap detail incorporates a weir of unknown length at the crest of the stone dike. An explanation of how the weir will function, knowing the pervious stone dike will allow the passage of water, is needed. Drainage calculations are also needed. 24. The "rain garden" south of Unit 7 is a nice feature, especially for a single-family home site, however, for this project, why aren't more rain gardens proposed? What is to be planted in the rain garden? If this is the only one to be constructed and because of its location behind a building it will be hidden from most people's view and possibly not taken care of for very long – keep in mind, it is on "common land." ## Sheet 6 of 8 - Detail Sheet - 1. Note 9 under "Construction Notes/General Provisions" should be more specific and state that the materials shall be disposed of off the development site. - 2. In Note 7 under "Development Schedule/Sequence of Operations" it is stated that topsoil stripped from driveway locations will be stockpiled in locations shown on the plans. However, none of the plans show any stockpile locations. Stockpile locations should be shown on the plans. - 3. In Note 8 under "Development Schedule/Sequence of Operations" it is stated that utility companies are to be contacted to coordinate connections to the water and sewer mains. If it is determined that the existing water and sewer mains are privately owned, the utility companies may not be the entity to contact for the proposed connections. An explanation of who will make the connections needs to be clarified. - 4. In Note 9 under "Development Schedule/Sequence of Operations," it is stated that the stormwater basin will be used as a temporary sedimentation basin and that drainage structures and pipe are to be installed with inlet protection to catch basins. In light of this, an explanation is needed on how sediment laden water will be prevented from discharging through the stormwater basin outlet structure and into the wetlands. - 5. In Note 15 "Development Schedule/Sequence of Operations" it is stated that utilities will be installed to the edge of the right-of-way. This note should be deleted as there is no right-of-way. - 6. In the "Development Schedule/Sequence of Operations" there is no mention of constructing a temporary sedimentation basin that is shown on Sheet 5 of 8 to the west of Units 47-51. ## Sheet 7 of 8 - Detail Sheet 2 - 1. A riprap "Plunge Pool" detail should be added to this sheet for the stormwater basin outlet discharging to the level spreader. The detail should be designed in accordance with the CT DOT drainage design specs handbook. - 2. A grass swale and riprap swale detail should be added to this sheet. - 3. A cross section of the stormwater basin through the stormwater basin outlet structure should be provided to show the different elevationss of stored water for the various design storms, 5- thru 100-year frequency. The "Stormwater Basin Outlet Structure Detail" and basin itself may have to be modified for this range of design storms. - 4. There are no deep test pits in the area of the proposed stormwater basin to determine the level of the average high water level (soil mottles), if there is any groundwater present at shallow (<5') depths and the percolation rate of the soil. - 5. The "Flared End Section" detail and table is for a precast concrete end section. The material and size of drainage pipe is not labeled anywhere on the plans. However, if the pipe used in the engineered drainage system is not Class III precast concrete pipe, and, for example, will be high density polyethylene (HDPE) pipe, it is highly unusual not to use a flared end section manufactured with the same material as the pipe. This needs to be explained or corrected. - 6. In the "Type 'C' Catch Basin Detail" the sump below the lowest pipe invert is called out as 2'-0" min. It is recommended that the sump be specified as 4'-0". - 7. In Note 2 under "Notes" in the "Turf Reinforcement Mat Installation" detail, it states that the turf reinforcement mat shall be North American Green P-300 ® or approved equivalent. This particular mat is not biodegradable. A biodegradable mat would be a more preferable choice. - 8. The Neenah R-3705 (product ID is incomplete and must be further specified by pipe outlet size) in the "Hooded Catch Basin Detail" appears to be a high maintenance item, according to what appears in the manufacturer's catalog cut. Furthermore, this product is manufactured using cast iron, which is very heavy. If it is installed without any support within the catch basin, special care must be exercised when anchoring this item in a cored precast concrete wall, if it is not cast in place at the precaster's facility, to prevent displacement (drooping) over time. Also, the sump is shown as 2'-0" min. and it is recommended that the sump be no less than 4'-0" deep. - 9. It is unclear where the "Hooded Catch Basin Detail" is to be applied. Is this to be used on every catch basin? #### Sheet 8 of 8 – Detail Sheet 3 - 1. In the "Slip Form Concrete Curbing" detail the curbing should be identified as "Bituminous Concrete Curbing" and it would be preferable to have the curbing placed on the binder course for improved resistance to displacement. Placing it on the wearing course makes it more vulnerable to severe damage by a snow plow. In my opinion an even better treatment with respect to snow plows and ease of construction would be to utilize a 12" wide Cape Cod Berm because, experience proves when a snow plow impacts it the plow blade will tend to ride up and over the berm, thus causing less damage and displacement. - 2. The type of brick forming the channel and the table is not specified in the "Typical Sanitary Manhole Cross Section" detail. Additionally, the type of frame and cover is not specified (size, weight, vent hole, no vent holes, locking, etc.) - 3. The sanitary "Sanitary Sewer Pipe in Trench Detail" is missing a dimension for the depth of sand to be placed in a level plane above the crown of the pipe, the width of the trench, and detectable warning tape placed over non-ferrous pipe. - 4. In the "Sewer Connection at Manhole" there is no information on how the penetration of existing manhole wall is to be properly sealed around the "residential sewer lateral" to prevent exfiltration/infiltration, i.e. Core 'N Seal, Link Seal, cement mortar, etc. Additionally, the size of the proposed sewer connection and type of pipe has not be specified in the detail. - 5. In the "Wood Guide Rail" detail, the lag bolts should be countersunk to minimize a snag point to pedestrian traffic. Also, for best longevity of the guide rail, the number of pounds per square foot of preservative retention and species of wood (Southern Yellow Pine?) should be specified. - 6. There is no indication on the plans where a wood guide rail is to be installed. - 7. For the "Speed Limit Sign Detail," due to the numerous parking spaces proposed along the main access drive, it seems more reasonable that the speed limit be posted at no more than 15 miles per hour. - 8. The "Sign Detail" for "No Outlet" should have the CT DOT "W14-2 (41-4605)" designation and spell out the manufacturer's product number, "Seton #44851," if that is the desired product to be installed. - 9. The "Stop Sign" detail should be called out by the CT DOT designation "R1-1 (31-0552)" and measure 30" x 30". - 10. The "Typical Section Unreinforced Retaining Wall" detail should include the additional information: - The batter of the wall or the step back of each ascending row of blocks. Also, in the drawing it is unclear if there is to be deformed rebar included with each course. - The type of the 4" diameter drain pipe behind the wall is not specified, i.e. Schedule 40, SDR 35, etc., and if it is to be perforated (holes up or down?). Should it be wrapped with filter cloth? - The composition of the "drainage aggregate" should be stated by "percent passing" or with a CT DOT material specification. - The minimum depth of the "drainage aggregate" above the pipe. - The depth below finish grade of the top of the "granular leveling pad" and its composition (structural fill). Is it necessary to utilize a filter fabric at the rear of the Versa-Lok wall to minimize migration of fine aggregate through the dry joints in the wall? - 11. In the "Roadway Cross Section" it is noted that a 50' wide right-of-way is in this project. Since there is no right-of-way lines associated with the road in this project, that designation should be removed. Additionally, it is believed that the sidewalk should be 5' wide with a 2' wide grassed snow shelf, not 4' wide snug to the curb as shown and specified as Portland cement concrete not just concrete. Another concern is that the grade of bituminous concrete to be used in the roadway base course and surface course is not specified. Also, the inclusion of a 6" curb a 12" wide Cape Cod Berm would be more maintenance friendly and have a more pleasing aesthetic appearance after several snowplow impacts. - 12. In the "Concrete Sidewalk Detail" the width of the sidewalk is shown to be 4'-0" wide and 4" thick. It is recommended that these dimensions be changed to 5'-0" and 5", respectively, in accordance with the Brooklyn Public Improvement Specifications. It is also recommended that the sidewalk material be called out as "Portland cement concrete" with a 2'-0" (min.) snow shelf depicted at the edge of pavement. ### **General Comments** - 1. The scale of the plans at 1'' = 40' appears to be inadequate in order to include numerous notes without cluttering the drawing. A better scale would be 1'' = 20' for viewing the information and avoiding a lot of clutter. - Detailed drainage calculations for the 5- thru 100-year design storms have not been submitted for review with the plans. The calculations are necessary to evaluate the engineered drainage system and any impact to the receiving wetlands. A gutter analysis should be included in the report evaluating the effectiveness of the catch basin grates in catching and treating gutter flow for spread and grate blowby. - 3. Due to its steep slope (10%±), length, width and critical role in providing access to the residential units, a separate plan and profile of the main access road will be required (scale: Horiz. 1" = 20' and Vert. 1"= 5') for evaluation and demonstrate its relationship to connected parking lots and elevations of adjacent residential units with stepped construction, and to see how well their parking spaces integrate with the design. Underground utilities (drainage, sewer, water, and gas) with appropriate inverts and frame elevations, and vertical geometry (PVC, PVT, PVI, Tangents, slopes, side parking intersections by station, etc.), should be included in the profile. This important information was not included in the plan set under review. This needs to be treated like a road project in order to be constructed properly. - 4. The proposed site design is very tight. Parking may become an issue for owners who have guests and no place to park them except along edges of some "off-street" (the main road is referred to for clarity as a "street") parking lots or along the "street." This has the potential of introducing a safety hazard, especially for any responding emergency service vehicles, and certainly an inconvenience for some residents—this is especially true for residents of Units 40-44 and 47-51. - 5. It should be noted that a large area of wetlands runs across the length of the southern portion of the property to be developed. Presently, the existing topography shows that this wetland receives water from a good portion of the land (acreage) along a portion of land at the northern boundary of the property and possibly beyond, from the school property. The proposed site development with its buildings and street will block a good portion of this flow from the wetlands-at-large and collect it in a drainage system that will only feed the wetlands at the sole discharge of the stormwater basin outlet. I am not sure if this impact has been studied by a wetlands biologist—not a soil scientist—to see if this is something to be concerned about and how it may affect the ecology of the area. However, runoff starvation of the wetland may be reduced if the drainage system were redesigned and broken up into segments with collected runoff discharged from various locations along the road, toward the wetland across "common land." This may also reduce the amount of pipe shown in the current design and reduce the size of the stormwater retention basin. - 6. It is unclear whether or not the Applicant's engineer has calculated the amount of sewage that may be produced by 51 units (number of bedrooms unknown at this time) and if the Brooklyn Water Pollution Control Authority has been contacted about this and approved a connection. - 7. After all is said and done, the drainage system, sanitary sewer system, water system and access roads cannot be constructed, without a lot of guess work, using these plans. The lack of information relegates them to "schematic plan" status. - 8. If this is to be a condominium as stated in the Applicant's application, when will the paperwork on the bylaws of the condominium association be drafted and finalized? How will this be coordinated with any approval this project may receive from the Planning and Zoning Commission? - 9. Who will track the surveying of the interior of each condominium unit to ensure that they are filed with the appropriate office (Town Clerk Land Evidence Records and Building Official)? How may this affect issuing a Certificate of Occupancy for any individual unit? - 10. In a condominium development there is common space that is governed by the Condominium Association, with each owner having a vote in decision making. Should the land around the buildings be labeled on the plans as "common space?" Any common space within the buildings would be surveyed and noted as such in land evidence records. However, this may be unlikely according to the building footprints shown on the plans. - 11. A typical floor plan and building rendering would be helpful in visualizing the Applicant's project - 12. Who will be the responsible party for maintenance and repair of the water main and sewer main and any extensions or modifications to the same? - 13. All references in the plan set to State of Connecticut Department of Transportation Form 817 or any other previous Form should be updated to read the current Form 818. By: Syl Pauley, Jr., P.E., NECCOG